Home
Class 11
MATHS
यदि sin x + sin^(2) x + sin^(3) x = 1 ...

यदि ` sin x + sin^(2) x + sin^(3) x = 1 ` , तो सिद्ध कीजिए कि `cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 ` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

If sinx + sin^(2)x + sin^(3)x = 1 , then : cos^(6)x - 4cos^(4)x + 8cos^(2)x equals :

sin x + sin^(2) x + sin^(3) x = 1 rArr cos^(6) x - 4cos^(4) x + cos^(2) x =

If sin x + sin^(2) x =1 " then " cos^(8) x + 2 cos^(6) x + cos^(4) x =

If sin x + sin^(2) x= 1 , then the value of cos^(8) x - cos ^(4) x + 2cos^(2)x -1 is equal to :

If sin x+sin^(2)x+sin^(3)x=1 then find the value of cos^(6)x-4cos^(4)x+8cos^(2)x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x