Home
Class 12
MATHS
" Prove that "sin^(-1)(sqrt(x))/(sqrt(x+...

" Prove that "sin^(-1)(sqrt(x))/(sqrt(x+a))=tan^(-1)sqrt((x)/(a))" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1) ((1-sqrt(x))/(1+sqrt(x))) = pi/4 - tan^(-1) sqrt(x) , "where" x gt 0

sin^(-1) (sqrt(x/(x+a))) = tan^(-1) (______).

Prove that : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/sqrt2lexle1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

[" 0.",int sin^(-1)sqrt((x)/(a+x))dx" is equal to "],[," 1) "(x+a)tan^(-1)sqrt((x)/(a))-sqrt(ax)+C],[" 3) "(x+a)cot^(-1)sqrt((x)/(a))-sqrt(ax)+C," 2) "(x+a)tan^(-1)sqrt((x)/(a))+sqrt(ax)+C]

tan^-1 (sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))