Home
Class 11
MATHS
" Prove that "log(11)/(5)+log(14)/(3)-lo...

" Prove that "log(11)/(5)+log(14)/(3)-log(22)/(15)=log7

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (log_(9)11)/(log_(5)3)=(log_(3)11)/(log_(sqrt(5))3)

Prove that 7 log(10/9)+3 log (81/80)=2 log (25/24)+log 2

Prove that (log_(4)2)(log_(2)3)=(log_(4)5)(log_(5)3)

prove that log2+16log((16)/(15))+12log((25)/(24))+7log((81)/(80))=1

Prove that log2+16(log16)/(15)+12(log25)/(24)+7(log81)/(80)=1

Prove that : "2 log" (15)/(18) - "log" (25)/(162) + "log" (4)/(9) = log 2

log((11)/(7))^(5)=5(log11)/(7)

log((9)/(14))+log((35)/(24))-log((15)/(16))=0

show that 7log((16)/(15))+5log((25)/(24))+3log((81)/(80))=log2

If a^(2)+b^(2)=7ab, prove that log((1)/(3)(a+b))=(1)/(2)(log a+log b)