Home
Class 10
MATHS
" (in) "(1+tan A)^(2)+(1-tan A)^(2)=2sec...

" (in) "(1+tan A)^(2)+(1-tan A)^(2)=2sec^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities : (1 - tan A)^(2) + (1 + tan A)^(2) = 2 sec^(2) A

Prove that (tan A-tan B)^(2)+(1+tan A tan B)^(2)=sec^(2)A sec^(2)B

Prove the following identities: (1+tan A tan B)^(2)+(tan A-tan B)^(2)=sec^(2)A sec^(2)B(tan A+csc B)^(2)-(cot B-sec A)^(2)=2tan A cot B(csc A+sec B)

sec^(2)A tan^(2) B-tan^(2)A sec^(2) B=

(1+ (tan A) / (2)) / (1- (tan A) / (2)) = sec A + tan A

(tan4A+tan2A)(1-tan^(2)3A tan^(2)A)=2tan3A sec^(2)A

(1+tan^(2)theta)=sec^(2)theta

If f(x)=sec^(2)x then (1+tan A*tan B)^(2)+(tan A-tan B)^(2)=

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to