Home
Class 12
MATHS
" (1) If "x^(y)y^(q)=(x+y)^(p+q)" ,prove...

" (1) If "x^(y)y^(q)=(x+y)^(p+q)" ,prove that "(dy)/(dx)=(y)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx) .

If x^p y^q= (x+y)^(p+q) , then prove that dy/dx = y/x