Home
Class 11
MATHS
If sum(r=1)^n r^4=I(n),t h e nsum(r=1)^n...

If `sum_(r=1)^n r^4=I(n),t h e nsum_(r=1)^n(2r-1)^4` is equal to `I(2n)-I(n)` b. `I(2n)-16 I(n)` c. `I(2n)-8I(n)` d. `I(2n)-4I(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^n r^4=I(n),t h e nsum_(r=1)^n(2r-1)^4 is equal to a. I(2n)-I(n) b. I(2n)-16 I(n) c. I(2n)-8I(n) d. I(2n)-4I(n)

If sum_(r=1)^(n)r^(4)=I(n), then sum_(r=1)^(n)(2r-1)^(4) is equal to I(2n)-I(n) b.I(2n)-16I(n) c.I(2n)-8I(n) d.I(2n)-4I(n)

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

If sum_(r=1)^n r^4= a_n then sum_(r=1)^n(2r-1)^4)= (A) a_(2n)+a_n (B) a_(2n)-a_n (C) a_(2n)-16a_n (D) a_(2n)+16b_n

If I(r)=r(r^(2)-1), then sum_(r=2)^(n)(1)/(I(r)) is equal to