Home
Class 11
MATHS
" If "A=[[0,-1,2],[1,0,3],[-2,-3,0]]" ,t...

" If "A=[[0,-1,2],[1,0,3],[-2,-3,0]]" ,then "A+2A^(TT)" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= [[0,-2,3],[2,0,-1],[-3,1,0]] then A^5 is

If A=[(0,-1,2),(1,0,3),(-2,-3,0)], then A+2A^t equals (A) A (B) -A^t (C) A^t (D) 2A^2

If A=[(0,-1,2),(1,0,3),(-2,-3,0)], then A+2A^t equals (A) a (B) -A^t (C) A^t (D) 2A^2

If A=[(0,1,-2),(-1,0,3),(2,-3,0)] then A+A^(T)=

" Let "A" be a "3times3" matrix such that "A[[1,2,3],[0,2,3],[0,1,1]]=[[0,0,1],[1,0,0],[0,1,0]]" .Then "A^(-1)" is "

If A=[[1, -1, 2], [3, 0, -2], [1, 0, 3]] , then (adjA)A=

If A = [{:(1,0,1),(2,1,0),(3,2,1):}] then det A is equal to

If A[(2,0,3),(1,-1,2),(3,-2,0)] , then (adj A)A=

Let P=[(1,2,1),(0,1,-1),(3,1,1)] . If the product PQ has inverse R=[(-1,0,1),(1,1,3),(2,0,2)] then Q^(-1) equals