Home
Class 9
MATHS
" (a) "p(x)=4x^(3)+5x^(2)+9x+4," भाजक "=...

" (a) "p(x)=4x^(3)+5x^(2)+9x+4," भाजक "=2x+1

Promotional Banner

Similar Questions

Explore conceptually related problems

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

Find the quotient and remainder in each of the following and verify the division algorithm : (i) p(x) =x^(3)-4x^(2)+2x-1 is divided by g(x)=x+2. (ii) p(x) =x^(4)+2x^(2)-x+1 is divided by g(x) =x^(2)+1 . (iii) p(x) =2x^(4)-3x^(3)+x^(2)+5x-3 is divided by g(x) =x^(2)+x-1 . (iv) p(x) =x^(4)-5x^(2)+6 is divided by g(x)=x+2.

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2

For the polynomial p(x)=x^(5)+4x^(3)-5x^(2)+x-1 , one of the factors is

p(x) = x^(3) + 4x^(2) + 5x -2 then p(1) = ……………

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Solve x ^(5) - 5x ^(4) + 9x ^(3) - 9x ^(2) + 5x -1 =0.

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)