Home
Class 11
MATHS
किसी triangleABC में सिद्ध करे कि ((a...

किसी `triangleABC` में सिद्ध करे कि
`((a + b+ c)^(2))/(a^(2) + b^(2) + c^(2)) = (cot""(A)/(2)+ cot""(B)/(2) +cot""(C)/(2))/(cotA + cotB + cotC)`

Promotional Banner

Similar Questions

Explore conceptually related problems

r^(2) cot ""(A)/(2) cot ""(B)/(2) cot ""(C)/(2)

( cot ""(A)/(2) + cot ""(B)/(2)+ cot ""( C )/( 2))/( cot A + cot B + cot C ) =

a^(2) cot A+ b^(2) cot B+ c ^(2) cot C =

In DeltaABC , with usual notation show that ((a+b+c)^(2))/(a^(2)+b^(2)+c^(2))=(cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2))/(cotA+cotB+cotC)

In DeltaABC,(cot(A//2)+cot(B//2)+cot(C//2))/(cotA+cotB+cotC)=

cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=cot((A)/(2))cot((B)/(2))cot((C)/(2))

a^(2)cot A+b^(2)cot B+c^(2)cot C=

In Delta ABC , if a=3 , b=4,c=6 then ("cot" (A)/(2)+"cot" (B)/(2)+ "cot" ( C)/(2))/("cot" A + "cot" B + "cot" C)=

Prove that (b + c -a) (cot.(B)/(2) + cot.(C)/(2)) = 2a cot.(A)/(2)

Prove that (b + c -a) (cot.(B)/(2) + cot.(C)/(2)) = 2a cot.(A)/(2)