Home
Class 12
MATHS
If the angle theta is acute, then the an...

If the angle `theta` is acute, then the angle between the pair of lines given by `(costheta-sintheta)x^(2)+2(costheta)xy+(costheta+sintheta)y^(2)=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the angle alpha is acut, then the acute angle between the pair of staight lines x^2(costheta-sintheta)+2xycostheta+y^2(cos theta+sintheta)=0 is

If costheta+sintheta=sqrt(2)costheta , then costheta-sintheta is

Evaluate : |(2costheta, -2sintheta),(sintheta, costheta)| .

Evaluate |(2costheta,-2sintheta),(sintheta,costheta)|

theta is acute angle between the lines x^(2)-xy-6y^(2)=0 , then (2costheta+3sintheta)/(4sintheta+5costheta) is

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=I is true for

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=I is true for

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=l is true for