Home
Class 12
MATHS
" (iii) "x(dy)/(dx)-y=(x+1)e^(-x),y(1)=0...

" (iii) "x(dy)/(dx)-y=(x+1)e^(-x),y(1)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve (dy)/(dx)-y=e^(x) ,y(0)=1

(x-y)(1-(dy)/(dx))=e^(x)

Find the general solutions of the following differential equations. (i) (dy)/(dx) = e^(x+y) (ii) (dy)/(dx) = e^(y-x) (iii) (dy)/(dx) = (xy+y)/(yx+x) (iv) y(1+x)dx+x(1+y)dy = 0

The solution of (dy)/(dx) -y=e^(x) , y(0) = 1 , is

The solution of (dy)/(dx) -y=e^(x) , y(0) = 1 , is

Express the following differential equations in the form (dx)/(dy) = F((x)/(y)) (i) (1+e^((x)/(y)))dx + e^((x)/(y))(1-(x)/(y))dy = 0 (ii) xdy - ydx + y e^(-(2x)/(y)) dy = 0

(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

The solution of the differential equation (dy)/(dx)+1=e^(x+y), is (x+y)e^(x+y)=0b(x+C)e^(x+y)=0c*(x-C)e^(x+y)=1d(x-C)e^(x+y)+1=0