Home
Class 11
CHEMISTRY
The orbital angular momentum of 3p elect...

The orbital angular momentum of 3p electrons is `sqrt(x)(h)/(2pi)`. Then the value of x is ______.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • ATOMIC STRUCTURE

    AAKASH SERIES|Exercise Level-II (Type - II) (Practice sheet- 6 (subjective/Analytical type Questions))|8 Videos
  • ATOMIC STRUCTURE

    AAKASH SERIES|Exercise PROBLEMS|48 Videos
  • ATOMIC STRUCTURE

    AAKASH SERIES|Exercise Level-II (Type - II) (Practice sheet- 5 (subjective/Analytical type Questions))|8 Videos
  • AROMATIC HYDROCARBONS

    AAKASH SERIES|Exercise OBJECTIVE EXERCIES - 3 (RECENT AIPMT/NEET QUESTIONS)|10 Videos
  • CHEMICAL BONDING

    AAKASH SERIES|Exercise OBJECTIVE EXERCISE -3 (RECENT AIPMT/NEET QUESTIONS )|39 Videos

Similar Questions

Explore conceptually related problems

Orbital angular momentum depends upon

Assertion (A) : The orbital angular momentum of 2s-electron is equal to that of 3s-electron. Reason (R) : The orbital angular momentum is given by the relation sqrt(l(l+1))(h)/(2pi) and the value of 1 is same for 2s-electron and 3s-electron.

The angular momentum of electron in 'd' orbital is equal to

An orbital is designated by certain values of first three quantum numbers (n, l and m) and according to Pauli.s exclusion principle, no two electrons in a atom can have all the for quantum numbers equal. N, l and m denote size, shape and orientation of the orbital. The permissible values of n are 1,2,3.... prop while that of 1 are all possible integral values from 0 to n-n. Orbitals with same values of n and 1 but different values of m (where m can have any integral values from 1 to +1 including zero) are of equal energy and are called degenerate orbitals. However degeneracy is destroyed in homogeneous external magnetic field due to different extent of interaction between the applied field and internal electronic magnet of different orbitals differing in orientations. In octahedral magnetic field external magnetic field as oriented along axes while in tetrahedral field the applied field actas more in between the axes than that on the axes themselves. For 1=0, 1,2,3,...., the states (called sub-shells) are denoted by the symbol s,p,d,f.....respectively. After f, the subshells are denoted by letters alphabetically 1 determines orbital angular motion (L) of electron as L = sqrt(l(l+1))(h)/(2pi) ON the other hand, m determines Z-component of orbital angular momentum as L_(Z) = m((h)/(2pi)) Hund.s rule states that in degenerate orbitals electrons do not pair up unless and until each each orbitals has got an electron with parallesl spins Besides orbital motion,an electron also posses spin-motion. Spin may be clockwise and anticloskwise. Both these spin motions are called two spins states of electrons characterized by spin Q.N (s) : s = +(1)/(2) and = -(1)/(2) respectively The sum of spin Q.N. of all the electrons is called total spin(s) and 2s+1 is called spin multiplicity of the configuration as a whole. The spin angular momentum of an electron is written as L_(s) = sqrt(s(s+1))(h)/(2pi) The orbital angular momentum of electron (l=1) makes an angles of 45^(@) from Z-axis. The L_(z) of electron will be

It is tempting to think that all possible transitions are permissible, and that an atomic spectrum arises from the transition of the electron from any initial orbital to any other orbital. However, this is not so, because a photon has an intrinsic spin angular momentum of sqrt2 (h)/(2pi) corresponding to S = 1 although it has no charge and no rest mass. On the other hand, an electron has got two types of angular momentum : Orbital angular momentum, L=sqrt(l(l+1))h/(2pi) and spin angular momentum, arising from orbital motion and spin motion of electron respectively. The change in angular momentum of the electron during any electronic transition must compensate for the angular momentum carries away by the photon. to satisfy this condition the difference between the azimuthal quantum numbers of the orbital within which transition takes place must differ by one. Thus, an electron in a d-orbital (1 = 2) cannot make a transition into an s = orbital (I = 0) because the photon cannot carry away enough angular momentum. An electron as is well known, possess four quantum numbers n, I, m and s. Out of these four I determines the magnitude of orbital angular momentum (mentioned above) while (2n m determines its z-components as m((h)/(2pi)) the permissible values of only integers right from -1 to + l. While those for I are also integers starting from 0 to (n − 1). The values of I denotes the sub shell. For I = 0, 1, 2, 3, 4,..... the sub-shells are denoted by the symbols s, p, d, f, g, .... respectively The orbital angular momentum of an electron in p-orbital makes an angle of 45^@ from Z-axis. Hence Z-component of orbital angular momentum of election is :

What are the values of the orbital angular momentum of an electron in the orbitals 1s, 3s, 3d and 2p ?

The angular momentum of a revolving electron in an orbit is equal to

The angular momentum of a revolving electron in an orbit is equal to

If x= (sqrt3+sqrt2)/(sqrt3-sqrt2) then the value of x+y is