Home
Class 9
MATHS
" (ii) "2.bar(327)...

" (ii) "2.bar(327)

Promotional Banner

Similar Questions

Explore conceptually related problems

Express the following decimal expression into rational numbers. 2.bar(327)

If bar(a)=bar(i)-2bar(j)+bar(k), bar(b)=2bar(i)+bar(j)+bar(k), bar(c ) = bar(i) + 2bar(j)-bar(k) , then find bar(a) xx (bar(b) xx bar(c )) and |(bar(a)xxbar(b))xxbar(c )| .

bar (a) = 2bar (i) + 3bar (j) -bar (k), bar (b) = bar (i) + 2bar (j) -4bar (k), bar (c) = bar (i) + bar (j) + bar (k), bar (d) = bar (i) -bar (j) -bar (k) then

If bar(a) = bar(i) + 2bar(j)-3bar(k), bar(b) = 3bar(i)-bar(j)+2bar(k) then S.T bar(a)+bar(b), bar(a)-bar(b) are perpendicular.

If bar(a) = bar(i) - 2bar(j) - 3bar(k), bar(b) = 3bar(i) -bar(j)+2bar(k) then S.T bar(a)+bar(b).bar(a)-bar(b) are perpendicular.

If bar(a) = 2bar(i) - 3bar(j) + bar(k) and bar(b) = bar(i) + 4bar(j) -2bar(k) , then find (bar(a) + bar(b))xx(bar(a)-bar(b))

For any vector bar(a) show that |bar(a) xx bar(i)|^(2) + |bar(a) xx bar(j)|^(2) + |bar(a) xx bar(k)|^(2)= 2|bar(a)|^(2)

If bar(a) = 2bar(i) + 2bar(j) - 3bar(k), bar(b) = 3bar(i) - bar(j) + 2bar(k) then find the angle between 2bar(a)+bar(b) and bar(a) + 2bar(b) .

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)