Home
Class 12
MATHS
The value of the integral I=int(0)^((pi)...

The value of the integral `I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^((pi)/(2))|sinx-cosx|dx is -

int_(0)^(pi//2)(cosx-sinx)e^(x)dx=

The value of the integral int_(0)^(pi//4) (sinx+cosx)/(3+sin2x)dx ,is

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

int_(0)^((pi)/2)(cos2x)/(cosx+sinx)dx=

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-

The value of the integral int_(0)^(pi)(e^(|cosx|)sinx)/(1+e^(cotx))dx is equal to