Home
Class 12
MATHS
If |z-3|=3, then show that (z-6)/z=i ...

If `|z-3|=3`, then show that `(z-6)/z=i tan (argz)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-3|=3, then show that (z-6)/(z)=i tan(arg z)

If |z-3|=3, then show that (z-6)/(z)=i tan(arg z)

If |z-1|=1, where z is a point on the argand plane, show that (z-2)/(z)=i tan (argz),where i=sqrt(-1).

If |z-1|=1, where z is a point on the argand plane, show that (z-2)/(z)=i tan (argz),where i=sqrt(-1).

If |z-1|=1, where is a point on the argand plane, show that (z-2)/(z)=i tan (argz),where i=sqrt(-1).

If |z-1|=1, where is a point on the argand plane, show that |(z-2)/(z)|= tan (argz), where i=sqrt(-1).

If z is any complex number which satisfies |z-2|=1, then show that sin(argz)=((z-1)(z-3)i)/(2|z|(2-z))

If iz^3+z^2-z+i = 0 , then show that |z|=1.

If z=3-2i then show that z^(2)-6z+13=0 Hence find the value of z^(4)-4z^(3)+6z^(2)-4z+17

If |z|<=1,|w|<=1 , then show that |z- w|^2<=(|z|-|w|)^2+(argz-argw)^2