Home
Class 12
MATHS
lim(x->1)(3sqrt(7+x^3)-sqrt(3+x^2))/(x-1...

`lim_(x->1)(3sqrt(7+x^3)-sqrt(3+x^2))/(x-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the limits : lim_(x to 1) (sqrt(7+x^3)-sqrt(3+5x^2))/(x-1)

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

lim_(x to10) (sqrt3+x-sqrt5-x)/(x^2-1) is equal to:

lim_(x rarr0)(3sqrt(1+x)3sqrt(-1-x))/(x)

lim_(x rarr1)((sqrt(3+x)-sqrt(5-x))/(x^(2)-1))

lim_(x rarr1)((sqrt(3+x)-sqrt(5-x))/(x^(2)-1))

lim_(x rarr 2) (sqrt(1 + sqrt(2 + x)) - sqrt(3))/(x-2) is equal to :