Home
Class 10
MATHS
(1)/(7)+(1)/(8)+(1)/(9)+(1)/(10)lt(1)/(8...

`(1)/(7)+(1)/(8)+(1)/(9)+(1)/(10)lt(1)/(8)-(1)/(9)+(1)/(10)+(1)/(n)`
For the above inequality. What is the greatest possible positive integer value of n?

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(9!)+(1)/(10!)=(n)/(11!) , then n=121 .

If (1)/(1!9!)+(1)/(3!7!)+(1)/(5!5!)+(1)/(7!3!)+(1)/(9!1!)=(2^n)/(10!) , then n=

If (-5)/(2)lt-2m+1lt(-7)/(5) , what is the greatest possible integer value of the expression 10m-5 ?

Find the sum of the possible integer values of m: 2m+n=10 m(n-1)=9

If (x)/(10!)=(1)/(8!)+(1)/(9!), find the value of x

Let P(n) : 1+ (1)/(4) + (1)/(9) + …. + (1)/(n^2) lt 2 - (1)/( n) is true for

Given that (1)/(2!17!)+(1)/(3!16!)+(1)/(4!15!)+...+(1)/(8!11!)+(1)/(9!10!)=(N)/(1!18!) ,find floor ((N)/(100)). Here,floor(x) is the greatest integer less than or equal to x.

(i) If (1)/(9!)+(1)/(10!)=(n)/(11!) , find n. (ii) If (1)/(8!)+(1)/(9!)=(x)/(10!) , find x.

Compute the 1/(8!)+1/(9!)+1/(10!)

(9n-(5n-3))/(8)=(2(n-1)-(3-7n))/(12) In the equation above, what is the value of n?