Home
Class 12
MATHS
If f(x) = 1 + x + x^(2) + …… for |x| lt ...

If `f(x) = 1 + x + x^(2) + ……` for `|x| lt 1` then show that `f^(-1)(x) = (x-1)/(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=1+x+x^(2)+..... for |x|lt1 then show that f^(-1)(x)=(x-1)/(x)

If f(x) = log ((1-x)/(1+x)) -1 lt x lt 1 then show that f(-x) = -f (x)

If f(x) = (x-1)/(x+1) , x ne -1 then show that f(f(x)) =(-1)/x

If f(x)=(x-1)/(x+1) , then show that f(-1/x)=-1/f(x) .

If f(x)= (x-1)/(x+1) , Then show that f(-(1)/(x))= (-1)/(f(x))

If f(x)=(x-1)/(x+1) ,then show that f(-1/x)=-1/f(x) .

If f(x) = (1)/(1-x) , show that f(f(x)) = x

If f(x)=x/(2^(x)-1) , then show that f(-1) = 2.