Home
Class 12
MATHS
Prove that: |(a^2+1, ab, ac),(ab, b^2+1,...

Prove that: `|(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

|(a^(2)+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|= 1 + a^2 + b^2 + c^2 .

Prove that, abs((a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)) =1+ a^2+b^2+c^2 .

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)|

If a, b and c are all positive real, then prove that minimum value of determinant |{:(a^2+1,ab,ac),(ab,b^2+1,bc),(ac,bc,c^2+1):}| = 1+a^2+b^2+c^2

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .