Home
Class 10
MATHS
यदि x = a sec theta cos phi , y = bsec ...

यदि ` x = a sec theta cos phi , y = bsec theta sin phi " और " z = c tan theta, " तो " x^(2)/a^(2) + y^(2)/b^(2) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a sec theta cos phi, y = b sec theta sin phi, z = c tan theta , then, the value of x^2 /a^2 + y^2/b^2 -z^2/c^2 is :

If x = a sec theta cos phi, y = b sec thetasin phi and z = c tan theta , then the value of x^2/a^2 + y^2/b^2 -z^2 /c^2 is

If x=a sec theta cosphi, y = b sec theta sin phi and z=c tan theta , then prove that (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=1.

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

If x=r cos theta cos phi , y=r cos theta sin phi and z=r sin theta , then x^(2)+y^(2)+z^(2)=

If x=r cos theta cos phi, y=r cos theta sin phi, z=r sin theta , then prove that x^(2)+y^(2)+z^(2)=r^(2).

If x = r cos theta sin phi, y = r sin theta sin phi , and z= r cos phi , prove that x^(2)+y^(2) + z^(2)=r^(2) .

"If" (a cos theta sec phi - x)/(a sin (theta + phi)) = (y - b sin theta sec phi)/(b cos (theta + phi)) = tan phi, "show that," x^(2)/a^(2) + y^(2)/b^(2) = 1.

If x=r sin theta cos phi, y= r sin theta sin phi, z=r cos theta , prove that x^2+y^2+z^2=r^2 .

If x = rsin theta*cos phi , y = rsin theta*sin phi and z = rcos theta then prove that x^2 + y^2 + z^2 = r^2