Home
Class 12
MATHS
If |(cos(A+B),-sin(A+B),cos2B),(sinA,cos...

If `|(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB)|=0` then B =

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=0 then the value of B is -

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=0 then the value of B is -

If |[cos(A+B), -sin (A+B), cos 2B],[sinA,cosA,sinB],[-cosA,sin A,cos B]|=0 then B=

The determinant |{:(sinA,cosA,sinA+cosB),(sinB,cosA,sin+cosB),(sinC,cosA,sinC+cosB):}| is equal to zero

Solve sinA.cos(A-B)-cosA.sin(A-B)

Prove that: sin(A+B)+cos(A-B)=(sinA+cosA)(sinB+cosB)

sin(A-B)=sinA cos B-cosA sinB

Using properties of determinant. Prove that | [sinA, cosA, sinA + cosB], [sinB, cosA, sinB + cosB], [sinC, cosA, sinC + cosB] | = 0

(sin^2A-sin^2B)/(sinA.cosA-sinB.cosB)=....