Home
Class 12
MATHS
" If "A=(t^(2),2t),B=((1)/(t^(2)),-(2)/(...

" If "A=(t^(2),2t),B=((1)/(t^(2)),-(2)/(t)),S=(1,0)" then "(1)/(SA)+(1)/(SB)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=(t^(2),2t),B=((1)/(t^(2)),-(2)/(t)) and S=(1,0) then (1)/(SA)+(1)/(SB) is equal to

If A = (at^(2), 2at ) , B= ((a)/(t^(2)),- (2a)/(t) ), S(a, 0) then (1)/(SA) + (1)/(SB) =

If A = (t^2,2t) and B = (1/t^2,-2/t) and S = (1,0), then show that 1/(SA)+1/(SB)=1

If P(t^(2),2t),Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

If P(t^(2),2t),Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

if P(t^(2),-2t) and Q((1)/(t^(2)),-(2)/(t)) and S(1,0) be any three points,find the value of ((1)/(SP)+(1)/(SQ))

If the normals at P(t_(1))andQ(t_(2)) on the parabola meet on the same parabola, then (A) t_(1)t_(2)=-1 (B) t_(2)=-t_(1)-(2)/(t_(1)) (C) t_(1)t_(2)=1 (D) t_(1)t_(2)=2

The normal drawn at a point (at_(1)^(2),-2at_(1)) of the parabola y^(2)=4ax meets it again in the point (at_(2)^(2),2at_(2)), then t_(2)=t_(1)+(2)/(t_(1))(b)t_(2)=t_(1)-(2)/(t_(1))t_(2)=-t_(1)+(2)/(t_(1))(d)t_(2)=-t_(1)-(2)/(t_(1))

If A=[(1),(0),(-1)],B=[(2,3,2)] then (A+B^(T))^(T)=