Home
Class 10
MATHS
" Prove that "(cosec theta-cot theta)^(2...

" Prove that "(cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Prove that ((1+cos theta)/(cos theta))((1-cos theta)/(cos theta))cosec^(2)theta=sec^(2)theta

Prove that ( cot theta - cosec theta)^(2) = ( 1- cos theta )/( 1+ cos theta )

Prove that (1+cosec theta -cot theta)/(1+cosec theta+cot theta)=(1-cos theta)/sin theta.

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .