Home
Class 12
MATHS
lim(n rarr oo)(tan theta+(1)/(2)tan(thet...

lim_(n rarr oo)(tan theta+(1)/(2)tan(theta)/(2)+...+(1)/(2^(n))tan(theta)/(2^(n)))=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum n terms of seires tan theta + (1) / (2) (tan theta) / (2) + (1) / (2 ^ (2)) (tan theta) / (2 ^ (2)) + ( 1) / (2 ^ (3)) (tan theta) / (2 ^ (3)) +

lim_ (n rarr oo) (1) / (2) tan ((x) / (2)) + (1) / (2 ^ (2)) tan ((x) / (2 ^ (2))). ... + (1) / (2 ^ (n)) tan ((x) / (2 ^ (n))) is equal to lim_ (n rarr oo) sum_ (n = 1) ^ (n) (1 ) / (2 ^ (n)) tan ((x) / (2 ^ (n)))

lim_ (n rarr oo) (1) / (2) tan ((x) / (2)) + (1) / (2 ^ (2)) tan ((x) / (2 ^ (2))). .. + (1) / (2 ^ (n)) tan ((x) / (2 ^ (n)))

lim_(theta rarr0)(3tan theta-tan3 theta)/(2 theta^(3))

The value of lim_(n rarr oo)[tan((pi)/(2n))tan((2 pi)/(2n))......tan((n pi)/(2n))]^((1)/(n))

If sum_(n=1)^(2013)tan(theta/(2^(n)))sec((theta)/(2^(n-1))) = tan((theta)/(2^(a)))-tan((theta)/(2^(b))) then (b+a) equals

Find the sum n terms of seires tan theta+1/2tan(theta/2 )+1/(2^2)tan(theta/(2^2))+1/(2^3)tan(theta/(2^3))+....

sum_ (n = 1) ^ (oo) (tan ((theta) / (2 ^ (n)))) / (2 ^ (n-1) cos ((theta) / (2 ^ (n-1)) ))

tan theta+(1)/(tan theta)=2 then prove that tan^(2)theta+(1)/(tan^(2)theta)=2

For theta_(1), theta_(2), ...., theta_(n) in (0, pi/2) , if In (sec theta_(1)-tan theta_(1))+ "In" (sec theta_(2)-tan theta_(2))+...+"In" (sec theta_(n)-tan theta_(n))+ "ln" pi=0 , then the value of cos((sec theta_(1)+ tan theta_(1))(sec theta_(2)+tan theta_(2))....(sec theta_(n)+tan theta_(n))) is equal to