Home
Class 11
MATHS
" (iv) "sin^(2)B=sin^(2)A+sin^(2)(A-B)-2...

" (iv) "sin^(2)B=sin^(2)A+sin^(2)(A-B)-2sin A cos B sin(A-B)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^2B=sin^2A+sin^2(A-B)-2sin A cos B sin(A-B)

If A+B+C= 180^(@) , prove that: (i) "sin"^(2)+"sin"^(2)B-"sin"^(2)C=2 "sin"A sin B cos C (ii) "sin"^(2)A-"sin"^(2)B+"sin"^(2) C=2 sin Acos B sin C.

If A+B+C= (pi)/(2) ,prove that: (i) cos^(2)A+cos^(2)B+cos^(2)C=2+2"sin"A "sin"B "sin"C (ii) "sin"^(2)+"sin"^(2)B+"sin"^(2)C=1-2 "sin"A sin B sin C .

sin ^ (2) A + sin ^ (2) (AB) -2sin A cos B sin (AB) = sin ^ (2) B

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

sin(A+B).sin(A- B)=sin^(2)A-sin^(2)B

sin(A+B).sin(A- B)=sin^(2)A-sin^(2)B

sin(A+B).sin(A- B)=sin^(2)A-sin^(2)B

sin(A+B).sin(A- B)=sin^(2)A-sin^(2)B

Prove (i)sin(A+B)+sin(A-B)=2sin A cos B (ii) sin(A+B)-sin(A-B)=2cos A sin B