Home
Class 12
MATHS
[" Let "f(x)=5-|x-2|" and "g(x)=|x+1|,x ...

[" Let "f(x)=5-|x-2|" and "g(x)=|x+1|,x in R." If "f(x)],[" ettains maximum value at "alpha" and "g(x)" attains minimum "],[" whe of "beta" then "lim_(x rarr-oo)((x-1)(x^(2)-5x+6))/(x^(2)-6x+8)" is equal to "],[qquad [" (2019Main,"12" April II) "],[" (b) "-3/2," (c) "-1/2," (d) "3/2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n attains maximum value at alpha and g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x)n artains maximum value at alpha ang g(x) attains minimum value of beta , then lim_(xto-alpha beta) ((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to

Let f(x)=5-|x-2| and g(x)=|x+1|, x in R . If f(x) attains maximum value at alpha ang g(x) attains minimum value of beta , then underset(xto-alpha beta)lim((x-1)(x^(2)-5x+6))/(x^(2)-6x+8) is equal to (a) -1/2 (b) -3/2 (c) 1/2 (d) 3/2

lim_(x rarr oo)(9x^(2)-2x-7)/(6x^(2)+5x+1

lim_(x rarr0)(3x^(2)+5x-1)/(x^(2)+2x+6)

lim_(x rarr oo)((x^(2)+5x+3)/(x^(2)+x+3))^((1)/(x))

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

Let f(x)=5-[x-2]g(x)=[x+1]+3 If maximum value of f(x) is alpha& minimum value of f(x) is beta then lim_(x rarr(alpha-beta))((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8)) is

Let f(x)=5-[x-2] g(x)=[x+1]+3 If maximum value of f(x) is alpha & minimum value of f(x) is beta then underset(xrarr(alpha-beta))lim ((x-3)(x^(2)-5x+6))/((x-1)(x^(2)-6x+8)) is (A) -1/2 (B)1/2 (C)3/2 (D)-3/2