Home
Class 12
MATHS
[" 82.यदि बिन्दु "z(1)=1+i," जहाँ "i=sqr...

[" 82.यदि बिन्दु "z_(1)=1+i," जहाँ "i=sqrt(-1)" ,बिन्दु "z_(2)=x+iy" ,का रेखा "],[ibar(z)-iz=5" में परावर्तन है,तो बिन्दु "z_(2)" क्या हे? "quad " [ "2015IT],[[" (a) "1+4i," (b) "4+i," (c) "1-i," (d) "-1-i]]

Promotional Banner

Similar Questions

Explore conceptually related problems

if the point z_(1)=1+i where i=sqrt(-1) is the reflection of a point z_(2)=x+iy in the line ibar(z)-iz=5 then the point z_(2) is

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If z_(1)=1+i,z_(2)=sqrt(3)+i then arg((z_(1))/(z_(2)))^(50) is

If z+sqrt(2)|z+1|+i=0 and z=x+iy then

If z_(1)=1+i, z_(2)=sqrt(3)+i, then arg ((z_(1))/(z_(2)))^(50)=

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

If z_(1)=3i and z_(2)=-1-i , where i=sqrt(-1) find the value of arg ((z_(1))/(z_(2)))

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1)z_(2)|= |z_(1)||z_(2)|