Home
Class 12
MATHS
[" If "f(x)+f(y)=f((x+y)/(1-xy))" for al...

[" If "f(x)+f(y)=f((x+y)/(1-xy))" for all "],[x,y in(-1,1)" and "lim_(x rarr0)(f(x))/(x)=2," then "f((1)/(sqrt(3)))" and "f'(1)" are "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

If f(x) + f(y) = f((x+y)/(1-xy)) for all x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2 , then

If f(x)+f(y)=f((x+y)/(1-xy))x>y in R,xy!=1,lim_(x rarr0)(f(x))/(x)=2. Find f(5),f'(-2)

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(x) = 1/x for all x != 0 then : lim _(x rarr 0 ) f((1-cos 5x)/x)=

Suppose a differntiable function f(x) satisfies the identity f(x+y)=f(x)+f(y)+xy^(2)+xy for all real x and y .If lim_(x rarr0)(f(x))/(x)=1 then f'(3) is equal to

Let f(x+y)=f(x)+f(y)+x^2y+y^2x and lim_(x rarr 0)(f(x))/x=1 . Find f'(3) .