Home
Class 12
MATHS
Prove that tan(2tan^(-1)x)=2tan(tan^(-1)...

Prove that `tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that: tan^(-1)(x)=2tan^(-1)(cosec tan^(-1)x-tan cot^(-1)x)

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

Prove that 2tan^-1(cosectan^-1x-tancot^-1x=tan^-1x .

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan2x=(2tanx)/(1-tan^2 x)