Home
Class 12
MATHS
The determinant Delta=|(a^2,a,1),(cos(n...

The determinant `Delta=|(a^2,a,1),(cos(nx),cos (n + 1) x,cos(n+2) x),(sin(nx),sin (n +1)x,sin (n + 2) x)|` is independent of

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant : Delta=|(a^2,a,1),(cosnx,cos(n+1)x,cos(n+2)x),(sinnx,sin(n+1)x,sin(n+2)x)| is : in dependent is :

The value of the determinant |a^(2)a1cos nx cos(n+1)x cos(n+2)x sin nx sin(n+1)x sin(n+2)x is independent of n(b)a(c)x(d) none of these

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x