Home
Class 12
MATHS
Let omega be the complex number cos((2...

Let `omega` be the complex number `cos((2pi)/3)+isin((2pi)/3)`. Then the number of distinct complex cos numbers z satisfying `Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos(2pi/3)+isin(2pi/3) Then the number of distinct complex numbers z satisfying abs[[z+1,omega,omega^2],[omega,(z+omega^2),1],[omega^2,1 ,z+omega]]=0 is equals to

Let omega be the complex number cos (2 pi)/(3)+i sin (2 pi)/(3) . Then the number of distinct complex number z satisfying [[z+1,omega,omega^(2)],[omega,z+omega^2,1],[omega^(2),1,z+omega]] = 0 is equal to

Let w be the complex number cos(2pi)/3 + isin(2pi)/3 . Then the number of distinct complex numbers z satisfying |(z+1, w, w^2),(2, z+w^2, 1),(w^2, 1, z+w)|=0 is equal

If omega = cis (2pi)/(3) , then number of distinct roots of |(z+1,omega,omega^(2)),(omega,z + omega^(2),1),(omega^(2),1,z+omega)| = 0.

Find the complex number satisfying system of equation z^(3)=-((omega))^(7) and z^(5).omega^(11)=1

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

Let w(Im w!=0) be a complex number.Then the set of all complex numbers z satisfying the equal w-bar(w)z=k(1-z), for some real number k,is :