Home
Class 12
MATHS
Find the value of int0^pi (x sinx)/ (1+c...

Find the value of `int_0^pi (x sinx)/ (1+cos^2x)\ dx`

Text Solution

Verified by Experts

I = `int_0^pi (xsinx)/(1+cos^2x)dx`........(i)
also using `int_a^b f(x) dx = int_0^pi f(a+b-x) dx`
I = `int_0^pi( (pi-x)(sinx))/(1+cos^2x)dx`........(ii)
adding equation 1 and 2
2I = `pi int_0^pi (xsinx)/(1+cos^2x)dx` ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_0^pi (xsinx)/(1+cos^2x)dx

Evaluate : int_0^pi (xsinx)/(1+cos^2x)dx .

Evaluate: int_0^pi(xsinx)/(1+cos^2x)\ dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)\ dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)\ dx

Evaluate int_0^pi (xsinx)/(1+cos^2x)""dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

Evaluate: int_0^pi(xsinx)/(1+cos^2x)dx

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx