Home
Class 11
MATHS
For x in [-2pi, 3pi] and y in R, the nu...

For `x in [-2pi, 3pi] and y in R`, the number of ordered pairs `(x, y)` satisfying the equation `sqrt3 sin x -cosx-3y^2 +6y-5=0` , is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y in [0, 2 pi] , then the total number of ordered pairs (x, y) satisfying the equation sinx cos y = 1 is

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x, y in [0,2pi] then find the total number of order pair (x,y) satisfying the equation sinx .cos y = 1

If x,y in (0,2pi) , then the number of distinct ordered pairs (x,y) satisfying the equation 9cos^(2)+sec^(2)y-6cosx-4secy+5=0 is

If x in[0,6 pi],y in[0,6 pi] then the number of ordered pair (x,y) which satisfy the equation sin^(-1)sin x+cos^(-1)cos y=(3 pi)/(2) are

Total number of ordered pairs (x, y) satisfying |y| = cos x and y = sin^(-1)(sin x) where |x| le 3 pi, is equal to :