Home
Class 11
MATHS
If f(x)=cos[pi/x] cos(pi/2(x-1)) ; wher...

If `f(x)=cos[pi/x] cos(pi/2(x-1))` ; where [x] is the greatest integer function of `x`,then ` f(x)` is continuous at :

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos([pi^2|x)+cos([-pi^2|x) , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x) = cos [pi]x + cos [pi x] , where [y] is the greatest integer function of y then f(pi/2) is equal to

If f(x)=cos[pi]x+cos[pi x], where [y] is the greatest integer function of y then f((pi)/(2)) is equal to

If f(x)=cos[pi^(2)]x+cos[-pi^(2)]x , where [x] stands for the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then