Home
Class 11
MATHS
Let f: N -> R and g : N -> R be two fun...

Let `f: N -> R and g : N -> R` be two functions and `f(1)=08, g(1)=0.6`, `f(n+1)=f(n)cos(g(n))-g(n)sin(g(n)) and g (n+1)=f(n) sin(g(n))+g(n) cos(g(n))` for `n>=1`. `lim_(n->oo) f(n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: N -> R and g : N -> R be two functions and f(1)=0.8, g(1)=0.6 , f(n+1)=f(n)cos(g(n))-g(n)sin(g(n)) and g (n+1)=f(n) sin(g(n))+g(n) cos(g(n)) for n>=1 . lim_(n->oo) f(n) is equal to

If f(n)=(-1)^(n-1)(n-1) and g(n)=n-f (n)AA n in N then (gog)(n)=

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim_(n to oo)f(n) equals

If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0 for all n in N , then find lim_(n->oo)f(n)

If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0 for all n in N , then find lim_(n->oo)f(n)

If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0 for all n in N , then find lim_(n->oo)f(n)

If f(n) = [(1)/(3)+(n)/(100)] , where [.] denotes G.I.F then sum_(n=1)^(200)f(n) is equal to

If f(n) = [(1)/(3)+(n)/(100)] , where [.] denotes G.I.F then sum_(n=1)^(200)f(n) is equal to