Home
Class 11
MATHS
If L = {1,2,3,4}, M = {3,4,5,6} and N =...

If `L = {1,2,3,4}, M = {3,4,5,6}` and `N = {1,3,5}`, then verify that `L - (M uu N) = (L-M) nn (L-N)`.

Text Solution

AI Generated Solution

To verify that \( L - (M \cup N) = (L - M) \cap (L - N) \), we will follow these steps: ### Step 1: Define the Sets - Let \( L = \{1, 2, 3, 4\} \) - Let \( M = \{3, 4, 5, 6\} \) - Let \( N = \{1, 3, 5\} \) ### Step 2: Calculate \( M \cup N \) ...
Promotional Banner

Topper's Solved these Questions

  • SETS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWERS TYPE QUESTIONS|6 Videos
  • SETS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|14 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR ENGLISH|Exercise Match the comumms|2 Videos
  • STATISTICS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos

Similar Questions

Explore conceptually related problems

In A B C , let L ,M ,N be the feet of the altitudes. The prove that sin(/_M L N)+sin(/_L M N)+sin(/_M N L)=4sinAsinBsinC

The set of quantum numbers, n = 3, l = 2, m_(l) = 0

Explain , giving reason , which of the following sets of quantum number are not possible {:(a,n= 0 ,l = 0, m_(1) = 0, m_(s) = +1//2),(b,n= 1 ,l = 0, m_(1) = 0, m_(s) = -1//2),(c,n= 1 ,l = 1, m_(1) = 0, m_(s) = +1//2),(d,n= 2 ,l = 1, m_(1) = 0, m_(s) = -1//2),(e,n= 3 ,l = 3, m_(1) = -3, m_(s) = +1//2),(f,n= 3 ,l = 1, m_(1) = 0, m_(s) = +1//2):}

If a = x^(m + n) . Y^(l), b = x^(n + l). Y^(m) and c = x^(l + m) . Y^(n) , Prove that : a^(m-n) . b^(n - 1) . c^(l-m) = 1

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

From the following sets quantum number state which are possible. Explain why the other are not permitted ? a. n = 0, l = 0, m= 0, s = + 1//2 b. n = 1, l = 0, m= 0, s = - 1//2 c. n = 1, l = 1, m= 0, s = + 1//2 d. n = 1, l = 0, m= +1, s = + 1//2 e. n = 0, l = 1, m= -1, s = - 1//2 f. n = 2, l = 2, m= 0, s = - 1//2 g. n = 2, l = 1, m= 0, s = - 1//2

If l : m = 2 (1)/(2) : 1(2)/(3) and m : n = 1 (1)/(4) : 3 (1)/(2) , find l : m : n

ABCD is a square of length a, a in N , a > 1. Let L_1, L_2 , L_3... be points on BC such that BL_1 = L_1 L_2 = L_2 L_3 = .... 1 and M_1,M_2 , M_3,.... be points on CD such that CM_1 = M_1M_2= M_2 M_3=... = 1 . Then sum_(n = 1)^(a-1) ((AL_n)^2 + (L_n M_n)^2) is equal to :

If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 (l n a + (l n a)^(2) + ( ln a)^(3) + (l n a)^(4) + ....) then 'a' is equal to

If the segment intercepted by the parabola y^2=4a x with the line l x+m y+n=0 subtends a right angle at the vertex, then 4a l+n=0 (b) 4a l+4a m+n=0 4a m+n=0 (d) a l+n=0