Home
Class 11
MATHS
If P={1,2} then PxxPxxP={(1,1,1,),(2,2,2...

If `P={1,2}` then `PxxPxxP={(1,1,1,),(2,2,2),(1,2,2,),(2,1,1)}`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement \( P \times P \times P = \{(1,1,1), (2,2,2), (1,2,2), (2,1,1)\} \) is true or false, we will follow these steps: ### Step 1: Identify the Set \( P \) The set \( P \) is given as: \[ P = \{1, 2\} \] ### Step 2: Calculate the Cartesian Product \( P \times P \times P \) The Cartesian product \( P \times P \times P \) consists of all possible ordered triples where each element of the triple is taken from the set \( P \). Since \( P \) has 2 elements, the number of elements in \( P \times P \times P \) is calculated as: \[ |P| \times |P| \times |P| = 2 \times 2 \times 2 = 8 \] ### Step 3: List All Possible Ordered Triples Now, we will list all the ordered triples formed by taking each element from \( P \) for each position in the triple: 1. \( (1, 1, 1) \) 2. \( (1, 1, 2) \) 3. \( (1, 2, 1) \) 4. \( (1, 2, 2) \) 5. \( (2, 1, 1) \) 6. \( (2, 1, 2) \) 7. \( (2, 2, 1) \) 8. \( (2, 2, 2) \) Thus, the complete set \( P \times P \times P \) is: \[ P \times P \times P = \{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)\} \] ### Step 4: Compare with the Given Set The given set is: \[ \{(1,1,1), (2,2,2), (1,2,2), (2,1,1)\} \] ### Step 5: Conclusion Since the complete set \( P \times P \times P \) contains 8 elements and is different from the given set, we conclude that the statement is false. ### Final Answer The statement \( P \times P \times P = \{(1,1,1), (2,2,2), (1,2,2), (2,1,1)\} \) is **false**. ---

To determine whether the statement \( P \times P \times P = \{(1,1,1), (2,2,2), (1,2,2), (2,1,1)\} \) is true or false, we will follow these steps: ### Step 1: Identify the Set \( P \) The set \( P \) is given as: \[ P = \{1, 2\} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Matching The Columns|2 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR ENGLISH|Exercise Match the comumms|2 Videos

Similar Questions

Explore conceptually related problems

Let A = {1, 2, 3} and R = {(1, 1), (2,2), (1, 2), (2, 1), (1,3)} then R is

Let A =[[1,2,2],[2,1,2],[2,2,1]] , then

The x-coordinates of the vertices of a square of unit area are the roots of the equation x^2-3|x|+2=0 . The y-coordinates of the vertices are the roots of the equation y^2-3y+2=0. Then the possible vertices of the square is/are (a)(1,1),(2,1),(2,2),(1,2) (b)(-1,1),(-2,1),(-2,2),(-1,2) (c)(2,1),(1,-1),(1,2),(2,2) (d)(-2,1),(-1,-1),(-1,2),(-2,2)

If adj [(1,0,2),(-1,1,-2),(0,2,1)]=[(5,a,-2),(1,1,0),(-2,-2,b)] , then find a ,b

Find the rank of the matrix A = [[1,2,-1,3],[3,-1,2,1],[2,-2,3,2],[1,-1,1,-1]]

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

If overline(P_1P_2) is perpendicular to overline(P_2P_3) , then the value of k is, where P_1(k, 1, -1), P_2(2k, 0, 2) and P_3(2+2k, k, 1) is …..

If {:P=[(sqrt3/2,1/2),(-1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

Let P=[(1,2,1),(0,1,-1),(3,1,1)] . If the product PQ has inverse R=[(-1,0,1),(1,1,3),(2,0,2)] then Q^(-1) equals