Home
Class 11
MATHS
If A={1,2,3},B={3,4}and C={4,5,6}, "then...

If `A={1,2,3},B={3,4}and C={4,5,6}, "then prove that" (AxxB)uu(AxxC)` `={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5 ),(2,6),(3,3),(3,4),(3,5),(3,6)}`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( (A \times B) \cup (A \times C) = \{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)\} \), we will follow these steps: ### Step 1: Define the Sets We start by defining the sets given in the problem: - \( A = \{1, 2, 3\} \) - \( B = \{3, 4\} \) - \( C = \{4, 5, 6\} \) ### Step 2: Calculate \( A \times B \) The Cartesian product \( A \times B \) consists of all ordered pairs \( (a, b) \) where \( a \in A \) and \( b \in B \). - For \( a = 1 \): \( (1,3), (1,4) \) - For \( a = 2 \): \( (2,3), (2,4) \) - For \( a = 3 \): \( (3,3), (3,4) \) Thus, \[ A \times B = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\} \] ### Step 3: Calculate \( A \times C \) Next, we calculate \( A \times C \), which consists of all ordered pairs \( (a, c) \) where \( a \in A \) and \( c \in C \). - For \( a = 1 \): \( (1,4), (1,5), (1,6) \) - For \( a = 2 \): \( (2,4), (2,5), (2,6) \) - For \( a = 3 \): \( (3,4), (3,5), (3,6) \) Thus, \[ A \times C = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\} \] ### Step 4: Calculate \( (A \times B) \cup (A \times C) \) Now we will take the union of the two sets calculated above: \[ (A \times B) \cup (A \times C) = \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\} \cup \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\} \] ### Step 5: Combine and Remove Duplicates Combining the two sets and removing duplicates: - From \( A \times B \): \( (1,3), (1,4), (2,3), (2,4), (3,3), (3,4) \) - From \( A \times C \): \( (1,5), (1,6), (2,5), (2,6), (3,5), (3,6) \) The combined set is: \[ \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4), (1,5), (1,6), (2,5), (2,6), (3,5), (3,6)\} \] ### Final Result Thus, we have: \[ (A \times B) \cup (A \times C) = \{(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3), (3,4), (3,5), (3,6)\} \] This matches the set given in the problem statement.

To prove that \( (A \times B) \cup (A \times C) = \{(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)\} \), we will follow these steps: ### Step 1: Define the Sets We start by defining the sets given in the problem: - \( A = \{1, 2, 3\} \) - \( B = \{3, 4\} \) - \( C = \{4, 5, 6\} \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|2 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Matching The Columns|2 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR ENGLISH|Exercise Match the comumms|2 Videos

Similar Questions

Explore conceptually related problems

If A={1,2,3},B={4},C={5}, then verify that: Axx(BuuC)=(AxxB)uu(AxxC)

If A={1,2,3},\ B={1,2,3,4},\ C={4,5,6},\ fin d\ :(AxxB)nn(AxxC)

If A={1,4},B={2,3,6} and C={2,3,7} , then verify that Axx(BcupC)=(AxxB)cup(AxxC)

If A={1,4}B={2,3,6} and C={2,3,7} verify that Axx(B-C)=(AxxB)-(AxxC) .

If A={1,2,3},\ B={3,4}a n d\ C={1,3,5} , find (AxxB)nn(AxxC)

If A={1,2,3},\ B={1,2,3,4},\ C={4,5,6},\ f i n d \ : Axx(B∩C)

If A={1,2,3},\ B={1,2,3,4},\ C={4,5,6},\ find :(AxxB)nn(AxxC)

If A={1,4},B={2,3,6} and C={2,3,7} , then verify that Axx(BcapC)=(AxxB)cap(AxxC)

If A={1,2,3},\ B={1,2,3,4},\ C={4,5,6},\ find : Axx(BnnC)

if A={1,2,3,4,5},B={2,4,6}and C={3,4,6} , then (Acup B) cap C is