Home
Class 11
MATHS
prove that 1+5+9+ . . .+(4n-3)=n(2n-1), ...

prove that 1+5+9+ . . .+(4n-3)=n(2n-1), for all natural number n.

Text Solution

Verified by Experts

Let P(n):1+5+9+ . . .+(4n-3)=n(2n-1), for all natural number n.
Step I We observe that P(1) is true.
`P(1):1=1(2xx1-1), 1=2-1` and 1=1, which is true.
Step II Now assume that P(n) is true for n=k.
So, P(k):1+5+9+ . . .+(4k-3) = k(2k-1) is true.
Step III Now, to prove P(k+1) is true.
(P(k+1):1+5+9+. . . +(4k-3)+4k+1)-3
=k(2k-1)+4(k+1)-3
`=2k^(2)-k+4k+4-3`
`=2k^(2)+3k+1`
`=2k^(2)+2k+k+1`
2K(k+1)+1(k+1)
=(k+1)(2k+1)
=(k+1)[2k+1+1-1]
=(k+1)[2(k+1)-1]
So, P(k+1) is true, whenever p(k) is true, hence p(n) is true.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTION|9 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Matching The Columns|5 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Matching The Columns|2 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+2+2^(2)+ . . .+2^(n)=2^(n+1)-1 , for all natural number n.

prove that 3^(2n)-1 is divisible by 8, for all natural numbers n.

For a gt 1 , prove that (1+a)^(n) ge (1+an) for all natural numbers n .

prove that 2nlt(n+2)! for all natural numbers n.

prove that 2+4+6+…2n=n^(2)+n , for all natural numbers n.

prove that n^(2)lt2^(n) , for all natural number n≥5 .

Prove that (1+x)^ngeq(1+n x), for all natural number n, where x >-1.

prove that 4^(n)-1 is divisible by 3, for each natural number n.

Prove that log_n(n+1)>log_(n+1)(n+2) for any natural number n > 1.

Prove that 1/(n+1)+1/(n+2)+...+1/(2n)> 13/24 ,for all natural number n>1 .