Home
Class 11
MATHS
Prove that for all ninN Cosalpha+cos(al...

Prove that for all `ninN` `Cosalpha+cos(alpha+beta)+cos(alpha+2beta)+ . . . +cos[alpha+(n-1)beta]`= `(cos[alpha+((n-1)/(2))beta]"sin"((nbeta)/(2)))/("sin"(beta)/(2))`

Text Solution

Verified by Experts

Let P (n): `Cosalpha+cos(alpha+beta)+cos(alpha+2beta)+ . . . +cos[alpha+(n-1)beta]`
`(cos[alpha+((n-1)/(2))beta]"sin"((nbeta)/(2)))/("sin"(beta)/(2))`
Step I We observe that P(1)
`(cos[alpha+((1-1)/(2))]beta"sin"(beta)/(2))/("sin"(beta)/(2))=(cos(alpha+0)"sin"(beta)/(2))/("sin"(beta)/(2))`
`cosalpha=cosalpha`
Hence, P(1) is true.
Step II Now, assume that P(n) is true for n=k.
`P(k):cosalpha+cos(alpha+beta)+cos(alpha+2beta)+. . . +cos[alpha+(k-1)beta]`
`(cos[alpha+((k-1)/(2))]beta"sin"(kbeta)/(2))/("sin"(beta)/(2))`
Step III Now, to prove P(k+1) is true, we have to show that
`P(k):cosalpha+cos(alpha+beta)+cos(alpha+2beta)+. . . +cos[alpha+(k-1)beta]`
`+cos[alpha+1-1beta]=(cos(alpha+(kbeta)/(2))"sin"(k+1)(beta)/(2))/("sin"(beta)/(2))`
LHS `=cosalpha+cos(alpha+beta)+cos(alpha+2beta)+. . . +cos[alpha+(k-1)beta]+cos(alpha+kbeta)`
`=(cos[alpha+((k-1)/(2))beta]"sin"(kbeta)/(2))/("sin"(beta)/(2))+cos(alpha+kbeta)`
`=(cos[alpha+((k-1)/(2))beta]"sin"(kbeta)/(2)+cos(alpha+kbeta)"sin"(beta)/(2))/("sin"(beta)/(2))`
`=("sin"(alpha(kbeta)/(2)-(beta)/(2)+(kbeta)/(2))-"sin"(alpha+(kbeta)/(2)-(beta)/(2)-(kbeta)/(2))+"sin"(alpha+kbeta+(beta)/(2))-"sin"(alpha+kbeta-(beta)/(2)))/(2"sin"(beta)/(2)`)
`=("sin"(alpha+kbeta+(beta)/(2))-"sin"(alpha-(beta)/(2)))/(2"sin"(beta)/(2))`
`=("2cos"(1)/(2)(alpha+(beta)/(2)+kbeta+alpha-(beta)/(2))"sin"(1)/(2)(alpha+(beta)/(2)+kbeta-alpha+(beta)/(2)))/(2"sin"(beta)/(2))`
`=("cos"(((2alpha)+kbeta)/(2))"sin"((kbeta+beta)/(2)))/("sin"(beta)/(2))=("cos"(alpha+(kbeta)/(2))"sin"(k+1)(beta)/(2))/("sin"(beta)/(2))=RHS`
So, P(k+1) is,Hence, P(n)is true.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|5 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Matching The Columns|5 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Matching The Columns|2 Videos

Similar Questions

Explore conceptually related problems

If cos(alpha+beta)=0 then sin(alpha+2beta)=

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Sum the series cosalpha+^nC_1 cos(alpha+beta)+^nC_2 cos (alpha+2beta)+…+cos(alpha+nbeta)

Statement-1: cos10^(@)+cos20^(@)+…..+cos170^(@)=0 Statement-2: cos alpha+cos(alpha+beta)+....+cos(alpha+(n-1)beta)=(cos(alpha+((n-1)beta)/(2))sin((nbeta)/(2)))/(sin((beta)/(2))), beta ne 2npi.

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Prove that : cos^2alpha+cos^2(alpha+beta)-2cosalphacosbetacos(alpha+beta)=sin^2beta

Show that cos ^2 alpha + cos^2 (alpha +Beta) - 2 cos alpha cos betacos (alpha+ beta) =sin^2 beta

Prove that (cos^2 alpha - cos^2 beta)/(cos^2 alpha*cos^2 beta) = tan^2 beta - tan^2 alpha

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))