Home
Class 9
MATHS
sqrt(10).sqrt(15) is equal to...

`sqrt(10).sqrt(15)` is equal to

A

`6sqrt(5)`

B

`5sqrt(6)`

C

`sqrt(25)`

D

`10sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{10} \cdot \sqrt{15} \), we can follow these steps: ### Step 1: Rewrite the square roots We can express \( \sqrt{10} \) and \( \sqrt{15} \) in terms of their prime factors: \[ \sqrt{10} = \sqrt{2 \cdot 5} \] \[ \sqrt{15} = \sqrt{3 \cdot 5} \] ### Step 2: Multiply the square roots Using the property of square roots that states \( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \), we can combine the two square roots: \[ \sqrt{10} \cdot \sqrt{15} = \sqrt{10 \cdot 15} \] ### Step 3: Calculate the product inside the square root Now, we calculate \( 10 \cdot 15 \): \[ 10 \cdot 15 = 150 \] Thus, we have: \[ \sqrt{10} \cdot \sqrt{15} = \sqrt{150} \] ### Step 4: Simplify \( \sqrt{150} \) Next, we simplify \( \sqrt{150} \) by factoring it: \[ 150 = 25 \cdot 6 \] So, \[ \sqrt{150} = \sqrt{25 \cdot 6} = \sqrt{25} \cdot \sqrt{6} \] Since \( \sqrt{25} = 5 \), we get: \[ \sqrt{150} = 5 \cdot \sqrt{6} \] ### Final Result Thus, the final result is: \[ \sqrt{10} \cdot \sqrt{15} = 5\sqrt{6} \]

To solve the expression \( \sqrt{10} \cdot \sqrt{15} \), we can follow these steps: ### Step 1: Rewrite the square roots We can express \( \sqrt{10} \) and \( \sqrt{15} \) in terms of their prime factors: \[ \sqrt{10} = \sqrt{2 \cdot 5} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.4 Long Answer type Questions|9 Videos

Similar Questions

Explore conceptually related problems

(sqrt(-3))(sqrt(-5)) is equal to

(sqrt(-2))(sqrt(-3)) is equal to A. sqrt(6) B. -sqrt(6) C. isqrt(6) D. none of these

If a<0,b>0, then sqrt(a)sqrt(b) is equal to (a) -sqrt(|a|b) (b) sqrt(|a|b)i (c) sqrt(|a|b) (d) none of these

If agt0 and blt0, then sqrt(a)sqrt(b) is equal to (where, i=sqrt(-1))

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

lim_(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

The value of inta^sqrt(x)/sqrt(x) dx is equal to

If a,b in R such that ab gt 0 , then sqrt(a)sqrt(b) is equal to

The sum of the intercepts made on the axes of coordinates by any tangent to the curve sqrt(x)+sqrt(y)=sqrt(a) is equal to

1+(sqrt(2))/(2-sqrt(2)) is equal to