Home
Class 9
MATHS
The number obtained on rationalising the...

The number obtained on rationalising the denominator of `(1)/(sqrt(7) - 2)` is

A

`(sqrt(7) + 2)/(3)`

B

`(sqrt(2) - 2)/(3)`

C

`(sqrt(7) + 2)/(5)`

D

`(sqrt(7) + 2)/(45)`

Text Solution

Verified by Experts

The correct Answer is:
A

`(1)/(sqrt(7) - 2) = (1)/(sqrt(7) - 2) . (sqrt(7) + 2)/(sqrt(7) + 2)` , [multiplying numerator and denominator by `sqrt(7) + 2`]
`= (sqrt(7) + 2)/((sqrt(7))^(2) - (sqrt(2))^(2)) = (sqrt(7) +2)/(7-4) = (sqrt(7) +2)/(3)` [using identity `(a-b) (a+b) = a^(2) - b^(2)`]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.4 Long Answer type Questions|9 Videos

Similar Questions

Explore conceptually related problems

Rationalise the denominator of (1)/(sqrt(5)) .

Rationalise the denominator of 1/(sqrt(2))

Rationalize the denominator of (1)/(sqrt(2))

Rationalise the denominator of (11)/(5+sqrt(3))

Rationalise the denominator of (1)/(7+4sqrt(3)) .

Rationalise the denominator of 1/(3+sqrt(2))

Rationalise the denominator of 1/(3+sqrt(2))

Rationalise the denominator of 1/(2+sqrt(3))

Rationalise the denominator of 2/(sqrt(3))

Rationalise the denominator of 1/(7+3sqrt(2))