Home
Class 9
MATHS
root4(root3(2^(2))) equal to...

`root4(root3(2^(2)))` equal to

A

`2^(-1/6)`

B

`2^(-6)`

C

`2^(1/6)`

D

`2^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[4]{\sqrt[3]{2^{2}}} \), we will simplify it step by step. ### Step 1: Rewrite the expression using exponents The expression can be rewritten using exponents: \[ \sqrt[4]{\sqrt[3]{2^{2}}} = \sqrt[4]{(2^{2})^{\frac{1}{3}}} \] ### Step 2: Apply the power of a power rule Using the power of a power rule, which states that \( (a^m)^n = a^{m \cdot n} \), we can simplify further: \[ (2^{2})^{\frac{1}{3}} = 2^{2 \cdot \frac{1}{3}} = 2^{\frac{2}{3}} \] Now, substitute this back into the expression: \[ \sqrt[4]{2^{\frac{2}{3}}} \] ### Step 3: Apply the power of a power rule again Now we apply the power of a power rule again: \[ \sqrt[4]{2^{\frac{2}{3}}} = (2^{\frac{2}{3}})^{\frac{1}{4}} = 2^{\frac{2}{3} \cdot \frac{1}{4}} = 2^{\frac{2}{12}} = 2^{\frac{1}{6}} \] ### Final Answer Thus, the expression \( \sqrt[4]{\sqrt[3]{2^{2}}} \) simplifies to: \[ 2^{\frac{1}{6}} \]

To solve the expression \( \sqrt[4]{\sqrt[3]{2^{2}}} \), we will simplify it step by step. ### Step 1: Rewrite the expression using exponents The expression can be rewritten using exponents: \[ \sqrt[4]{\sqrt[3]{2^{2}}} = \sqrt[4]{(2^{2})^{\frac{1}{3}}} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.4 Long Answer type Questions|9 Videos

Similar Questions

Explore conceptually related problems

root(3)(8^(2)) is equal to :-

The product root3(2).root4(2). root12(32) equal to

int (x)^(1/3) (root(7)(1+root(3)(x^(4))))dx is equal to

int(1)/(x(1+root(3)(x))^(2))dx is equal to

lim_(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2x-3))+root(3)((2x-3))+...+root(n)((2x-3))) is equal to

int(2)/((2-x)^(2))root3((2-x)/(2+x))dx is equal to

If the difference of the roots of the question ,x^(2)+px+q=0"be unity, then"(p^(2)+4q^(2)) equals to :

sqrt(x^(-2)y^(3)) root(4)(root(3)(x^(2)))

lim_(x->oo)(2sqrt(x)+3root3x+4root4x+.......+nrootnx)/(sqrt((2x-3))+root3(2x-3)+.......+rootn(2x-3)) is equal to (a) 1 (b) oo (c) sqrt(2) (d) none of these

lim_(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=