Home
Class 9
MATHS
The product root3(2).root4(2). root12(32...

The product `root3(2).root4(2). root12(32)` equal to

A

`sqrt2`

B

2

C

`root12(2)`

D

`root12(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product of \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \). ### Step-by-Step Solution: 1. **Convert the roots to exponential form**: \[ \sqrt[3]{2} = 2^{\frac{1}{3}}, \quad \sqrt[4]{2} = 2^{\frac{1}{4}}, \quad \sqrt[12]{32} = 32^{\frac{1}{12}} \] 2. **Express 32 as a power of 2**: \[ 32 = 2^5 \quad \text{(since } 32 = 2 \times 16 = 2 \times 2^4 = 2^5\text{)} \] Therefore, \[ \sqrt[12]{32} = (2^5)^{\frac{1}{12}} = 2^{\frac{5}{12}} \] 3. **Combine all the exponential forms**: \[ \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} = 2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}} \cdot 2^{\frac{5}{12}} \] 4. **Add the exponents**: Since the bases are the same, we can add the exponents: \[ 2^{\left(\frac{1}{3} + \frac{1}{4} + \frac{5}{12}\right)} \] 5. **Find a common denominator**: The least common multiple (LCM) of 3, 4, and 12 is 12. We convert each fraction: \[ \frac{1}{3} = \frac{4}{12}, \quad \frac{1}{4} = \frac{3}{12}, \quad \frac{5}{12} = \frac{5}{12} \] 6. **Add the fractions**: \[ \frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \] 7. **Final result**: \[ 2^{1} = 2 \] Thus, the product \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \) equals \( 2 \).

To solve the problem, we need to find the product of \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \). ### Step-by-Step Solution: 1. **Convert the roots to exponential form**: \[ \sqrt[3]{2} = 2^{\frac{1}{3}}, \quad \sqrt[4]{2} = 2^{\frac{1}{4}}, \quad \sqrt[12]{32} = 32^{\frac{1}{12}} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise SHORT ANSWER TYPE QUESTIONS|18 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.4 Long Answer type Questions|9 Videos

Similar Questions

Explore conceptually related problems

root4(root3(2^(2))) equal to

root(3)(8^(2)) is equal to :-

int (dx)/(root3(x)+root4(x))

sqrt4 , root4(8) , root3(5)

The product of the roots of the equation whose roots are greater by unity than the equation x^(3)-5x^(2)+6x-3=0 is equal to

Evaluate (root(3)3^root(3)3)^root(3)(3^2)

If the product of the roots of the equation 2x^2 + ax + 4 sina = 0 is 1, then roots will be imaginary, if

The sum of rational term in (sqrt(2)+root3 3 + root6 5)^(10) is equal to 12632 b. 1260 c. 126 d. none of these

If the seventh, terms from the beginning and the end in the expansion of (root(3)(2)+1/(root(3)(3)))^(n) are equal, then n is equal to (i) 10 (ii) 11 (iii) 12 (iv) 13

Fill in the blanks. If the product of the roots of the equation x^2-3k x+2e^(2logk)-1=0 is 7, then the roots are real for____________.