Home
Class 9
MATHS
If p(x)=x^(2)-2sqrt(2)x+1 , then p (2s...

If ` p(x)=x^(2)-2sqrt(2)x+1` , then p `(2sqrt(2))` is equal to

A

0

B

1

C

`4sqrt(2)`

D

`8sqrt(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( p(2\sqrt{2}) \) for the polynomial \( p(x) = x^2 - 2\sqrt{2}x + 1 \), we will substitute \( x \) with \( 2\sqrt{2} \) in the polynomial and simplify step by step. ### Step-by-Step Solution: 1. **Substitute \( x \) with \( 2\sqrt{2} \)**: \[ p(2\sqrt{2}) = (2\sqrt{2})^2 - 2\sqrt{2}(2\sqrt{2}) + 1 \] **Hint**: Remember to square the term \( 2\sqrt{2} \) carefully. 2. **Calculate \( (2\sqrt{2})^2 \)**: \[ (2\sqrt{2})^2 = 2^2 \cdot (\sqrt{2})^2 = 4 \cdot 2 = 8 \] **Hint**: Use the property \( (a\sqrt{b})^2 = a^2 \cdot b \). 3. **Calculate \( -2\sqrt{2}(2\sqrt{2}) \)**: \[ -2\sqrt{2}(2\sqrt{2}) = -4 \cdot (\sqrt{2} \cdot \sqrt{2}) = -4 \cdot 2 = -8 \] **Hint**: Multiply the coefficients and remember that \( \sqrt{2} \cdot \sqrt{2} = 2 \). 4. **Combine the results**: \[ p(2\sqrt{2}) = 8 - 8 + 1 \] **Hint**: Keep track of positive and negative signs while combining. 5. **Simplify the expression**: \[ p(2\sqrt{2}) = 0 + 1 = 1 \] **Hint**: Adding zero to a number does not change its value. ### Final Answer: Thus, \( p(2\sqrt{2}) = 1 \).

To find \( p(2\sqrt{2}) \) for the polynomial \( p(x) = x^2 - 2\sqrt{2}x + 1 \), we will substitute \( x \) with \( 2\sqrt{2} \) in the polynomial and simplify step by step. ### Step-by-Step Solution: 1. **Substitute \( x \) with \( 2\sqrt{2} \)**: \[ p(2\sqrt{2}) = (2\sqrt{2})^2 - 2\sqrt{2}(2\sqrt{2}) + 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.2 very short Answer type Questions|32 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.3 very short Answer type Questions|10 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • QUADRILATERALS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|18 Videos

Similar Questions

Explore conceptually related problems

If x = 13 + 2sqrt(42) , then sqrt(x) + (1)/(sqrt(x)) is equal to asqrt(b) then find the value of b - a ?

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2sqrtx) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

lim_(xrarr2)(sqrt(x+2)-sqrt(x-2))/(x+2) is equal to

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

underset(x to sqrt(2))(It) (x^(2) - 2)/(x^(2) + sqrt(2)x - 4) is equal to

Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x) . If f(1)=sqrt3 , then (f(2))^(2) is equal to

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then (dy)/(dx) equals