Home
Class 9
MATHS
if a,and c are all non zero and a+b+...

if a,and c are all non zero and a+b+c=0 , then prove that `(a^(2))/(bc)+(b^(2))/(ac)+(c^(2))/(ab)=3.`

Text Solution

AI Generated Solution

To prove that \[ \frac{a^2}{bc} + \frac{b^2}{ac} + \frac{c^2}{ab} = 3 \] given that \( a + b + c = 0 \) and \( a, b, c \) are all non-zero, we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.3 very short Answer type Questions|10 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • QUADRILATERALS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|18 Videos

Similar Questions

Explore conceptually related problems

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If each of a, b and c is a non-zero number and (a)/(b)= (b)/(c ) , show that: (a + b+c) (a-b + c) = a^(2) + b^(2) + c^(2)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

If A, B and C are three poins on a line and B lies between A and C, then prove that AB + BC = AC.

In a triangle ABC, 2B= A + C and b^(2) = ac , then (a(a+b+c))/(3bc) is

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is