Home
Class 9
MATHS
Prove that (a+b+c)^3 - a^3-b^3-c^3 = 3(a...

Prove that `(a+b+c)^3 - a^3-b^3-c^3 = 3(a+b)(b+c)(c+a).`

Text Solution

Verified by Experts

Given `p(x)=x^(4)-2x^(3)+3x^(2)-ax+3a-7`
when we divide p(x) by x+1 ,then we get the the reamainder p(-1)
Now , `P(-1)=(-1)^(4)-2(-1)^(3)+3(-1)^(3)+3(-1)^(2)-a(-1)+3a-7`
`=1+2+3+a+3a-7=4a-1`
According to the question `p(-1) =19`
`implies 4a-1=19`
`implies 4a-1=19`
` implies 4a=20`
`therefore a=5`
`therefore ` Required polynomial `=x^(4)-2x^(3)+3x^(2)-5x+3(5)-7`
`=x^(4) -2x^(3) +3x^(2)-5x+15-7`
`=x^(4)-2x^(3) +3x^(2)-5x+8`
when we divide `p(x) ` by x+2 then we get the remainder p(-2),
Now , `P(-2)=(-2)^(4)-2(-2)^(3)+3(-2)^(3) +3(-2)^(2)-5(-2)+8`
`=16+16+12+10+8=62`
hence ,the value of a is 5 and remainder is 62 .
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NCERT EXEMPLAR ENGLISH|Exercise EXERCISE 2.3 very short Answer type Questions|10 Videos
  • NUMBER SYSTEMS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|7 Videos
  • QUADRILATERALS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|18 Videos

Similar Questions

Explore conceptually related problems

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Prove that : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)=2(a^3+b^3+c^3-3a b c)

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a(a+b+c)

Prove that (a^8+b^8+c^8)/(a^3b^3c^3)>1/a+1/b+1/c

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Factorise : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)

Factorise : (a+b)^3+(b+c)^3+(c+a)^3-3(a+b)(b+c)(c+a)

If (a-b),\ (b-c),(c-a) are in G.P. then prove that (a+b+c)^2=3(a b+b c+c a)

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}

Prove that : a^3+b^3+c^3-3a b c=1/2(a+b+c)"{"a-b")"^2+(b-c)^2+(c-a)^2}