Home
Class 11
MATHS
If acos2theta+bsin2theta=c has alpha an...

If `acos2theta+bsin2theta=c ` has `alpha and beta` as its roots, then prove that `tanalpha+tanbeta=(2b)/(a+c)`.

Text Solution

AI Generated Solution

To prove that if \( a \cos 2\theta + b \sin 2\theta = c \) has roots \( \alpha \) and \( \beta \), then \( \tan \alpha + \tan \beta = \frac{2b}{a+c} \), we can follow these steps: ### Step 1: Rewrite the Given Equation We start with the equation: \[ a \cos 2\theta + b \sin 2\theta = c \] Using the double angle identities, we can express \( \cos 2\theta \) and \( \sin 2\theta \) in terms of \( \tan \theta \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If acos2theta+bsin2theta= c, alpha and beta as its roots , then prove that tanalpha+t a nbeta=(2 b)/(a+c) , tanalpha*t a nbeta=(c-a)/(c+a) , tan(alpha+beta)=b/a

If the equation a cos 2 theta +b sin 2 theta = c had theta _(1), theta _(2) as its roots, prove that (i) tan theta_(1) + tan theta_(2) ""=( 2b)/(c +a) (ii) tan theta _(1) tan theta _(2) ="" ( c -a)/( c +a )

If alpha and beta are distinct roots of acostheta+b sintheta=c , prove that sin(alpha+beta)=(2a b)/(a^2+b^2)

If cos (theta - alpha) = a and sin(theta - beta) = b (0 lt theta - alpha, theta - beta lt pi//2) , then prove that cos^(2) (alpha - beta) + 2ab sin (alpha - beta) = a^(2) + b^(2)

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

If asin^(2)theta+bcos^(2)theta=c , then prove that tan^(2)theta=(c-b)/(a-c)

if tanalpha -tanbeta =x and cotbeta-cotalpha =y prove that cot(alpha-beta) = (x+y)/(xy)

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.