Home
Class 11
MATHS
If x=secphi -tanphi and y="cosec" phi+c...

If `x=secphi -tanphi and y="cosec" phi+cotphi`, then show that `xy+x-y+1=0.`

Text Solution

AI Generated Solution

To solve the problem, we need to show that if \( x = \sec \phi - \tan \phi \) and \( y = \csc \phi + \cot \phi \), then \( xy + x - y + 1 = 0 \). ### Step 1: Find the product \( xy \) We start by calculating \( xy \): \[ xy = (\sec \phi - \tan \phi)(\csc \phi + \cot \phi) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If x=sectheta "and " y=cosec theta +cottheta , then prove that xy+1=y-x .

If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy=

x = a cosec theta + b cot theta and y= a cosec theta - b cot theta show that [ (x+y)/a ]^2 -[ (x-y)/b]^2 =4

If x=sint,y=sinKt then show that (1-x^(2))y_2-xy_(1)+K^(2)y=0 .

If phi(x) is a differentiable function AAx in Rand a inR^(+) such that phi(0)=phi(2a),phi(a)=phi(3a)and phi(0)nephi(a), then show that there is at least one root of equation phi'(x+a)=phi'(x)"in"(0,2a).

If y=e^(2x)(a x+b) , show that y_2-4\ y_1+4\ y=0 .

If y="cosec"^(-1)x ,\ \ x >1 , then show that x(x^2-1)(d^2y)/(dx^2)+(2x^2-1)(dy)/(dx)=0 .

If cos(theta+phi)= mcos(theta-phi) , then prove that tan theta=(1-m)/(1+m)cotphi .

If logy=tan^(-1)x , show that (1+x^2)y_2+(2x-1)y_1=0 .

If (sectheta+tantheta)(secphi+tanphi)(secPsi+tanPsi)=tanthetatanphitanPsi, then prove that (sectheta-tantheta)(secphi-tanphi)(secPsi-tanPsi)=cottheta.cotphi.cotPsi