Home
Class 11
MATHS
cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8...

`cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=`

Text Solution

AI Generated Solution

To solve the expression \( \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{5\pi}{8}\right) + \cos^4\left(\frac{7\pi}{8}\right) \), we can follow these steps: ### Step 1: Rewrite the cosines We can use the property of cosine in different quadrants: - \( \cos\left(\frac{5\pi}{8}\right) = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos\left(\frac{3\pi}{8}\right) \) - \( \cos\left(\frac{7\pi}{8}\right) = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos\left(\frac{\pi}{8}\right) \) Thus, we can rewrite: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Prove that: cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2

Prove that: cos^4pi/8+cos^4(3pi)/8+cos^4(5pi)/8+cos^4(7pi)/8=3/2

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Solve cos^6(pi/16)+cos^6((3pi)/16)+cos^6((5pi)/16)+cos^6((7pi)/16)

Prove that: cos^(2)((pi)/(8)) + cos^(2)((3pi)/(8)) + cos^(2)((5pi)/(8))+ cos^(2)((7pi)/(8))=2

Value of cos^3 (pi/8)cos^3 ((3pi)/8) + sin^3 (pi/8)sin^3 ((3pi)/8) is

Prove that: (1+cos. (pi)/8)(1+cos. (3pi)/8)(1+cos. (5pi)/8)(1+cos. (7pi)/8)=1/8

The value of (1+cospi/8)(1+cos(3pi)/8)(1+cos(5pi)/8)(1+cos(7pi)/8)i s (a)1/4 (b) 3/4 (c) 1/8 (d) 3/8

"cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)=k